Genetic polymorphisms and drug interactions modulating CYP2D6 and CYP3A activities have a major effect on oxycodone analgesic efficacy and safety.
نویسندگان
چکیده
BACKGROUND AND PURPOSE The major drug-metabolizing enzymes for the oxidation of oxycodone are CYP2D6 and CYP3A. A high interindividual variability in the activity of these enzymes because of genetic polymorphisms and/or drug-drug interactions is well established. The possible role of an active metabolite in the pharmacodynamics of oxycodone has been questioned and the importance of CYP3A-mediated effects on the pharmacokinetics and pharmacodynamics of oxycodone has been poorly explored. EXPERIMENTAL APPROACH We conducted a randomized crossover (five arms) double-blind placebo-controlled study in 10 healthy volunteers genotyped for CYP2D6. Oral oxycodone (0.2 mg x kg(-1)) was given alone or after inhibition of CYP2D6 (with quinidine) and/or of CYP3A (with ketoconazole). Experimental pain (cold pressor test, electrical stimulation, thermode), pupil size, psychomotor effects and toxicity were assessed. KEY RESULTS CYP2D6 activity was correlated with oxycodone experimental pain assessment. CYP2D6 ultra-rapid metabolizers experienced increased pharmacodynamic effects, whereas cold pressor test and pupil size were unchanged in CYP2D6 poor metabolizers, relative to extensive metabolizers. CYP2D6 blockade reduced subjective pain threshold (SPT) for oxycodone by 30% and the response was similar to placebo. CYP3A4 blockade had a major effect on all pharmacodynamic assessments and SPT increased by 15%. Oxymorphone C(max) was correlated with SPT assessment (rho(S)= 0.7) and the only independent positive predictor of SPT. Side-effects were observed after CYP3A4 blockade and/or in CYP2D6 ultra-rapid metabolizers. CONCLUSIONS AND IMPLICATIONS The modulation of CYP2D6 and CYP3A activities had clear effects on oxycodone pharmacodynamics and these effects were dependent on CYP2D6 genetic polymorphism.
منابع مشابه
[Interindividual variation of pharmacokinetic disposition of and clinical responses to opioid analgesics in cancer pain patients].
Use of prescription opioids for cancer pain according to the World Health Organization analgesic ladder has been accepted in Japan. Although oxycodone and fentanyl are commonly used as first-line analgesics, a few clinical reports have been published on interindividual variations in their pharmacokinetics and clinical responses in cancer patients. (1) Some factors relating to CYP2D6, CYP3A, ATP...
متن کاملEffect of an antiretroviral regimen containing ritonavir boosted lopinavir on intestinal and hepatic CYP3A, CYP2D6 and P-glycoprotein in HIV-infected patients.
This study aimed to quantify the inhibition of cytochrome P450 (CYP3A), CYP2D6, and P-glycoprotein in human immunodeficiency virus (HIV)-infected patients receiving an antiretroviral therapy (ART) containing ritonavir boosted lopinavir, and to identify factors influencing ritonavir and lopinavir pharmacokinetics. We measured activities of CYP3A, CYP2D6, and P-glycoprotein in 28 patients before ...
متن کاملPharmacogenomic considerations in opioid analgesia
Translating pharmacogenetics to clinical practice has been particularly challenging in the context of pain, due to the complexity of this multifaceted phenotype and the overall subjective nature of pain perception and response to analgesia. Overall, numerous genes involved with the pharmacokinetics and dynamics of opioids response are candidate genes in the context of opioid analgesia. The clin...
متن کاملCYP2D6 Genotype Dependent Oxycodone Metabolism in Postoperative Patients
BACKGROUND The impact of polymorphic cytochrome P450 CYP2D6 enzyme on oxycodone's metabolism and clinical efficacy is currently being discussed. However, there are only spare data from postoperative settings. The hypothesis of this study is that genotype dependent CYP2D6 activity influences plasma concentrations of oxycodone and its metabolites and impacts analgesic consumption. METHODS Patie...
متن کاملPrediction of Metabolic Interactions With Oxycodone via CYP2D6 and CYP3A Inhibition Using a Physiologically Based Pharmacokinetic Model
Evaluation of a potential risk of metabolic drug-drug interactions (DDI) is of high importance in the clinical setting. In this study, a physiologically based pharmacokinetic (PBPK) model was developed for oxycodone and its two primary metabolites, oxymorphone and noroxycodone, in order to assess different DDI scenarios using published in vitro and in vivo data. Once developed and refined, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- British journal of pharmacology
دوره 160 4 شماره
صفحات -
تاریخ انتشار 2010